Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Emerg Infect Dis ; 28(11): 2326-2329, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2054899

ABSTRACT

Crimean-Congo hemorrhagic fever (CCHF) was detected in 2 refugees living in a refugee settlement in Kikuube district, Uganda. Investigations revealed a CCHF IgG seroprevalence of 71.3% (37/52) in goats within the refugee settlement. This finding highlights the need for a multisectoral approach to controlling CCHF in humans and animals in Uganda.


Subject(s)
COVID-19 , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Refugees , Animals , Humans , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Seroepidemiologic Studies , Uganda/epidemiology , Pandemics , Disease Outbreaks , Goats , Immunoglobulin G , Antibodies, Viral
2.
Emerg Infect Dis ; 28(11): 2290-2293, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2054898

ABSTRACT

Rift Valley fever, endemic or emerging throughout most of Africa, causes considerable risk to human and animal health. We report 7 confirmed Rift Valley fever cases, 1 fatal, in Kiruhura District, Uganda, during 2021. Our findings highlight the importance of continued viral hemorrhagic fever surveillance, despite challenges associated with the COVID-19 pandemic.


Subject(s)
COVID-19 , Rift Valley Fever , Rift Valley fever virus , Animals , Humans , Rift Valley Fever/epidemiology , COVID-19/epidemiology , Uganda/epidemiology , Pandemics , Disease Outbreaks
3.
Int J Infect Dis ; 112: 281-287, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1654535

ABSTRACT

INTRODUCTION: Serological testing is needed to better understand the epidemiology of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Rapid diagnostic tests (RDTs) have been developed to detect specific antibodies, IgM and IgG, to the virus. The performance of 25 of these RDTs was evaluated. METHODS: A serological reference panel of 50 positive and 100 negative plasma specimens was developed from SARS-CoV-2 PCR and antibody positive patients and pre-pandemic SARS-CoV-2-negative specimens collected in 2016. Test performance of the 25 RDTs was evaluated against this panel. RESULTS: A total of 10 RDTs had a sensitivity ≥98%, while 13 RDTs had a specificity ≥98% to anti-SARS-CoV-2 IgG antibodies. Four RDTs (Boson, MultiG, Standard Q, and VivaDiag) had both sensitivity and specificity ≥98% to anti-SARS-CoV-2 IgG antibodies. Only three RDTs had a sensitivity ≥98%, while 10 RDTs had a specificity ≥98% to anti-SARS-CoV-2 IgM antibodies. Three RDTs (Autobio, MultiG, and Standard Q) had sensitivity and specificity ≥98% to combined IgG/IgM. The RDTs that performed well also had perfect or almost perfect inter-reader agreement. CONCLUSIONS: This evaluation identified three RDTs with a sensitivity and specificity to IgM/IgG antibodies of ≥98% with the potential for widespread antibody testing in Uganda.


Subject(s)
COVID-19 , SARS-CoV-2 , Academies and Institutes , Antibodies, Viral , Diagnostic Tests, Routine , Humans , Immunoglobulin M , Sensitivity and Specificity , Uganda/epidemiology
4.
BMC Med ; 19(1): 160, 2021 07 09.
Article in English | MEDLINE | ID: covidwho-1301851

ABSTRACT

BACKGROUND: East Africa is home to 170 million people and prone to frequent outbreaks of viral haemorrhagic fevers and various bacterial diseases. A major challenge is that epidemics mostly happen in remote areas, where infrastructure for Biosecurity Level (BSL) 3/4 laboratory capacity is not available. As samples have to be transported from the outbreak area to the National Public Health Laboratories (NPHL) in the capitals or even flown to international reference centres, diagnosis is significantly delayed and epidemics emerge. MAIN TEXT: The East African Community (EAC), an intergovernmental body of Burundi, Rwanda, Tanzania, Kenya, Uganda, and South Sudan, received 10 million € funding from the German Development Bank (KfW) to establish BSL3/4 capacity in the region. Between 2017 and 2020, the EAC in collaboration with the Bernhard-Nocht-Institute for Tropical Medicine (Germany) and the Partner Countries' Ministries of Health and their respective NPHLs, established a regional network of nine mobile BSL3/4 laboratories. These rapidly deployable laboratories allowed the region to reduce sample turn-around-time (from days to an average of 8h) at the centre of the outbreak and rapidly respond to epidemics. In the present article, the approach for implementing such a regional project is outlined and five major aspects (including recommendations) are described: (i) the overall project coordination activities through the EAC Secretariat and the Partner States, (ii) procurement of equipment, (iii) the established laboratory setup and diagnostic panels, (iv) regional training activities and capacity building of various stakeholders and (v) completed and ongoing field missions. The latter includes an EAC/WHO field simulation exercise that was conducted on the border between Tanzania and Kenya in June 2019, the support in molecular diagnosis during the Tanzanian Dengue outbreak in 2019, the participation in the Ugandan National Ebola response activities in Kisoro district along the Uganda/DRC border in Oct/Nov 2019 and the deployments of the laboratories to assist in SARS-CoV-2 diagnostics throughout the region since early 2020. CONCLUSIONS: The established EAC mobile laboratory network allows accurate and timely diagnosis of BSL3/4 pathogens in all East African countries, important for individual patient management and to effectively contain the spread of epidemic-prone diseases.


Subject(s)
COVID-19/prevention & control , Community Networks , Dengue/epidemiology , Hemorrhagic Fever, Ebola/epidemiology , Laboratories , Mobile Health Units , Burundi/epidemiology , COVID-19/therapy , Dengue/prevention & control , Epidemics , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/therapy , Humans , Kenya/epidemiology , Mobile Health Units/economics , Public Health , Rwanda/epidemiology , SARS-CoV-2 , South Sudan/epidemiology , Tanzania/epidemiology , Uganda/epidemiology
5.
Int J Infect Dis ; 104: 282-286, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-898982

ABSTRACT

OBJECTIVES: There is a high demand for SARS-CoV-2 testing to identify COVID-19 cases. Real-time quantitative PCR (qRT-PCR) is the recommended diagnostic test but a number of constraints prevent its widespread implementation, including cost. The aim of this study was to evaluate a low cost and easy to use rapid antigen test for diagnosing COVID-19 at the point of care. METHODS: Nasopharyngeal swabs from suspected COVID-19 cases and low-risk volunteers were tested with the STANDARD Q COVID-19 Ag Test and the results were compared with the qRT-PCR results. RESULTS: In total, 262 samples were collected, including 90 qRT-PCR positives. The majority of samples were from males (89%) with a mean age of 34 years and only 13 (14%) of the positives were mildly symptomatic. The sensitivity and specificity of the antigen test were 70.0% (95% confidence interval (CI): 60-79) and 92% (95% CI: 87-96), respectively, and the diagnostic accuracy was 84% (95% CI: 79-88). The antigen test was more likely to be positive for samples with qRT-PCR Ct values ≤29, with a sensitivity of 92%. CONCLUSIONS: The STANDARD Q COVID-19 Ag Test performed less than optimally in this evaluation. However, the test may still have an important role to play early in infection when timely access to molecular testing is not available but the results should be confirmed by qRT-PCR.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Adult , COVID-19/virology , Female , Humans , Male , Nasopharynx/virology , Point-of-Care Systems , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Uganda
6.
Emerg Infect Dis ; 26(10): 2411-2415, 2020 10.
Article in English | MEDLINE | ID: covidwho-625963

ABSTRACT

We established rapid local viral sequencing to document the genomic diversity of severe acute respiratory syndrome coronavirus 2 entering Uganda. Virus lineages closely followed the travel origins of infected persons. Our sequence data provide an important baseline for tracking any further transmission of the virus throughout the country and region.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Air Travel , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Genetic Variation , Genome , Health Policy , Humans , Mass Screening , Motor Vehicles , Phylogeography , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Quarantine , SARS-CoV-2 , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL